
Faster Evaluation of AES using TFHE
Roy Stracovsky Rasoul Akhavan Mahdavi Florian Kerschbaum

University of Waterloo

Advanced Encryption Standard (AES)

AES is a symmetric block cipher that operates on an internal 4× 4 matrix of
bytes known as the state.

AES
msg ∈ {0, 1}128

roundkeys ∈ {0, 1}1408
ct ∈ {0, 1}128

key-schedulerkey ∈ {0, 1}s our implementation focus

It applies the following round operations on the state for 10 rounds during
encryption.

SubBytes: Applies an s-box to each byte.

ShiftRows: Swaps the positions of bytes.

MixColumns: Performs linear combinations on each column.

AddRoundKey: Adds the round key to the round key.

TFHE and Concrete

TFHE is a fully homomorphic encryption (FHE) scheme based on the learning
with errors (LWE) problem which allows for efficient programmable
bootstrapping (PBS).

Concrete implements Zama’s variant of TFHE and operates on encrypted floats.
Floats are encoded onto the real Torus R/Z and special attention must be paid to
padding and bit precision. Concrete operations include subtraction, multiple types
of addition, and programmable bootstrapping (which we denote PBSf (·)(c)).

PBS
E(m)

f
E(f (m))

*with controlled noise

These operations allow for other important operations. For example ct-ct
homomorphic multiplication (which we denote �) leverages the identity that

ab =

⌊
(a + b)2

4

⌋
−
⌊
(a− b)2

4

⌋
.

Motivation

Encryptions of pseudo-random numbers (PRNs) are used in secure protocols with
preprocessing. Usually these encrypted PRNs are generated by the client and sent
to the server. Homomorphic evaluation of AES allows the server to directly
generate PRNs, reducing communication costs.

In addition, evaluating AES acts as a litmus test for the practicality of FHE
schemes and we aim to show that TFHE can be used in complex applications.

Experimental Results

Our implementation of AES shows the fastest single-evaluation
(total/non-amortized) time of any existing implementation with a fresh output
which may be directly used in further computation.

Total
Time

of
Blocks

Security Key Sizes Fresh

Single
Eval.

Our Work (k = 4) 4.2m 1 128 365MB 3

Our Work (k = 5) 8.25m 1 94/128 658MB 3

MS13 (packed) 22m 1 80 - 7

Amortized
Eval.

GHS15 (w/ bs) 17.5m 180 123 3.7GB∗ 3

GHS15 (w/o bs) 4.1m 120 150 3GB∗ 7

DHS16 25h 1800 128 13GB 7

The parameters we use in our implementations are as below.

n N log q γ ` κ t Security

k = 4 750 2048 64 7 3 2 7 128-bit
k = 5 750 4096 64 24 1 1 20 128-bit

Implementing AES in Concrete

We encode and encrypt each state byte into two ciphertexts due to limitations on
practical parameters for TFHE. For example

1 0 1 1 0 1 0 0

bh b`

is encrypted as (ch, c`) = (E(bh), E(b`)) = (E(101), E(10100)). We use k to
denote the number of bits in b`.

Homomorphic byte operations

XOR: Computed using PBS to extract bits from the operands, bitwise XOR
via addition/subtraction and PBS, and recombining bits into a byte.
Concretely, we compute the XOR between two ciphertexts c1, c2 with

k′∑
i=0

PBS2i×(· mod 2)

(
PBSebi(·) (c1) + PBSebi(·) (c2)

)
which minimizes the effect of noise growth between bootstraps.

S-box: Can be computed using PBS to evaluate sbox(2ki× c`) for
0 ≤ i < 28−k and PBS, ct-ct multiplication, and addition to select the output
corresponding to the correct input pair. Concretely, we implement s-box on an
encrypted byte (ch, c`) with28−k−1∑

i=0

PBSeqi(ch)� PBSsboxh(i, c`),

28−k−1∑
i=0

PBSeqi(ch)� PBSsbox`(i, c`)


where eqi(x) denotes the equality function which outputs 1 if x = i or 0
otherwise, and sboxh, sbox` receive a tuple (a, b) and output the appropriate
higher/lower order bits of sbox(2k × a + b).

Mul2: Consists of a left-shift with a conditional modulo. The left shift can be
realized via PBS and adding the highest order bit of c` to ch. The conditional
modulo can be done by generating the appropriate XOR value via PBS and the
homomorphic XOR from above. Concretely we compute,((

PBS·<<1(ch) + PBSebk−1(c`)
)
⊕ PBSeq1(eb7−k(·))(ch),

PBS·<<1(c`)⊕ PBS11×eq1(eb7−k(·))(ch)
)

Homomorphic AES

The AES round operations following directly from the byte operations. As the
round operations are naturally parallelizable, we update the value of each byte in
the state matrix on a separate thread for further efficiency.

Related Work

Gentry et al. [GHS12] implement AES using BGV, with and without
bootstrapping, implemented in HElib with low amortized runtime.

Mella and Susella [MS13] also implement AES using BGV, however they focus
on low total time. They provide multiple implementations which partition and
encrypt the state differently.

Doroz et al. [DHS16] implement an amortized evaluation of AES using the LTV
cryptosystem, and propose several optimizations to enhance the performance of
LTV.

References

Yarkın Doröz, Yin Hu, and Berk Sunar. “Homomorphic AES evaluation using
the modified LTV scheme”. In: Designs, Codes and Cryptography 80.2 (2016),
pp. 333–358.

Craig Gentry, Shai Halevi, and Nigel P Smart. “Homomorphic evaluation of the
AES circuit”. In: Annual Cryptology Conference. Springer. 2012, pp. 850–867.

Silvia Mella and Ruggero Susella. “On the homomorphic computation of symmet-
ric cryptographic primitives”. In: IMA International Conference on Cryptography
and Coding. Springer. 2013, pp. 28–44.

FHE.org Conference 2022, Trondheim, Norway May 29, 2022 University of Waterloo

